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WHAT IF MASS STORAGE WERE FREE?

George Copeland
Tektronix, Inc.
Beaverton, Oregon 97077

Abstract

This paper investigates how database systems
would be designed and used under the limiting-case
assumption that mass storage is free. It is argued
that free mass storage would free database systems
from the limitations and problems caused by
conventional deletion techniques. A non-deletion
strategy would significantly simplify database
systems and their operation, as well as increase
their funectionality and availability.

Consideration of this limiting case helps shed
light on a more realistic argument: if the cost of
mass storage were low enough, then deletion would
become undesirable.

What if Mass Storage Were Free?

George P. Copeland. 1980.

have been required to place a greater emphasis on
human costs than on hardware costs.

This paper considers the limiting-case
assumption that mass storage is free. Its purpose
is to examine some of the implications that this
assumption would have concerning the design of
future database systems.

Section 2 argues that this free-storage
assumption leads to the elimination of deletion in
database systems. A non-deletion strategy is
suggested using timestamps that would allow
significant simplifications in database systems and
their operation, as well as a significant increase
in application functjonali and data integri




Section 5 summarizes the arguments and states
their conclusions.

2 Deletion considered harmful

This section argues that significant
improvements in functionality, integrity,
availability, and simpliecity can be achieved in

database systems if the deletion mechanism is
eliminated.

What if Mass Storage Were Free?

George P. Copeland. 1980.



2.2.1 The importance of access to past states

In human memory, no deletion mechanism exists
(Underwood 1969, Nielsen 1958). Although human
memory exhibits a decay characteristic, people do
not delete. The deletion concept was invented to
reuse expensive computer storage.

In the real world of everyday life, people
commonly use knowledge of past information to make
decisions that control their individual 1lives,
their govermments, their businesses, and other
organizations. For example, it is quite common to
make comparisons of current data with previous

-
at= a¥all~ - 2 YA - i a ale = MM I Y

What if Mass Storage Were Free?

George P. Copeland. 1980.



JUXT

1986



JUXT

1986

The Vision 86
Radio& TV Fair in Stockholm.



JUXT

Radio &TU-maéassan

\IST01;86

The Vision 86 Radio & TV Fair.

Stockholm metro system advert. 1986.




JUXT

&

TN

iF

Ui s

i
| E
o -
Vinn
[

1T
WL d
i A
T

Filing Systems and Databases for the Commodore 64.
A P Stephenson and D J Stephenson. 1985.



JUXT

Med Maxells

DISKETTER

5 TAPPAR

du inte

" MINNET.

o I o 1
With Maxell's diskettes you won't lose memory.
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TOWARDS IMMUTABILITY



Immutable Database Systems JUXT

We are building one called XTDB.

This talk is about indexing.
The ideas are not tied to our architecture.

References and links to papers at end.



Analytics JUXT

Big Data and OLAP.
Data Lake and Table Formats.
Separation of Storage and Compute.

HTAP. Hybrid Transactional/Analytical Processing.



Separation of Storage and Compute JUXT

CPU Cache.

ALE

SSD.

Distributed Cache.

Object Store.



Client 1 Client N

Application Application
Record Manager Record Manager
Page Manager Page Manager

Building a Database on S3.

Matthias Brantner, Daniela Florescu, David A. Graf, Donald Kossmann, and Tim Kraska. 2008.




A Decomposition Storage Model

Copeland and Khoshafian in 1985.
Today known as column stores.

Embraces sequential array access.

Our system is an HTAP column store.

JUXT



MAvUlvaos. dyoLvem LX =3 pul’puac A LAlAD L'cpurl. A A3
to claim that decomposition is better Instead, we
claim that the consensus opinion 1is not well
founded and that neither is clearly better until a
closer analysis is made along the many dimensions
of a database system The purpose of this report
is to move further in both scope and depth toward
such an analysis We examine such dimensions as
simplicity, generality, storage requirements,
update performance and retrieval performance

1 INTRODUCTION

Most database systems use an n-ary storage
model (NSM) for a set of records This approach
stores data as seen in the conceptual schema
Also, various inverted file or cluster indexes
might be added for improved access speeds The key
concept in the NSM is that all attributes of a
conceptual schema record are stored together For
example, the conceptual schema relation

Risur| al | a2 | a3 |
| 81| vi1] v21]| v31]
| 82| vi2| v22| v32|
| 83| vi13| v23| v33|

contains a surrogate for record identity and three

A Decomposition Storage Model.

George P. Copeland and Setrag Khoshafian. 1985.

a Lransposca sLulrag<c moGcel wilklil SUllrogactces
included The DSM pairs each attribute value with
the surrogate of its conceptual schema record in a
binary relation For example, the above relation
would be stored as

allsur| vall| a2|sur| val| a3|sur| val]

] st| vii] | 81} v21] | s1] v31]
| s2| viz| | 82| v22| | 82| v32|
| 83| vi3| | 83] v23] | 83| v33]|

In addition, the DSM stores two copies of each
attribute relation One copy is clustered on the
value while the other 1is clustered on the
surrogate These statements apply only to base
(1 e, extensional) data To support the
relational model, intermediate and final results
need an n-ary representation If a richer data
model than normalized relations is supported, then
intermediate and final results need a
correspondingly richer representation

This report compares these two storage models
based on several criteria Section 2 compares the
relative complexity and generality of the two
storage models Section 3 compares their storage
requirements Section 4 compares their update
performance Section 5 compares their retrieval
performance Finally, Section 6 provides a summar
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) Object Storage *
Arrow Query Engine

Local Object Cache - Durable Transaction Queue -
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SQL client
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Bitemporal Index 1. Storage of chunks and metadata
2. Immutable, non-interactive transactions

Node(s) 3. Asynchronous, deterministic transaction processing

XTDB Core2 Architecture.

JUXT. 2020-2022.
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The Latency Problem JUXT

Shared disk strikes back.
Enables Copeland's vision.
Data needs to be found and navigated.

Introduces latency and request costs.



The Latency Solution JUXT

Indexing and caching.
Light immutable indexes in storage.
Adaptive indexing for compute workload.

Academia for inspiration.
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Finding and Reading Papers JUXT

Skim abstract, then look for interesting pictures.
Resist temptation to understand each paper.
Find a pragmatic approach via references.
Invalidate your ideas, avoid costly experiments.

arxiv.org, semanticscholar.org, paperswelove.org.


https://arxiv.org/
https://semanticscholar.org/
https://paperswelove.org/

Machine Learning for Database Systems JUXT

Self-Driving Databases, CMU.

Adaptive Indexing, Harvard.
Instance-Optimized Data Systems, MIT.

Takes DBAs out of the loop.



INDEX SELECTION IN A SELF-ADAPTIVE
DATA BASE MANAGEMENT SYSTEM

Michael Hammer
Arvola Chan

- Laboratory for Computer Science, MIT,
‘Cambrtdge, Massachusetts, 02139.

- We address the problem of automatically adjusting the physical organizanon of a data base to
‘optimize its performarice as its access requirements change. We describe the prmciples of ‘the
automatic index selection facility of a prototype self-adaptive data base management system
that is currently under development. The importance of accurate usage model acquisition and
data characteristics estimation is stressed. The statistics gathering mechanisms that are being
incorporated into our prototype system are discussed. Exponential smoothing techniques are
used for averaging statistics observed over different periods of time in order to-predict future . } !‘
characteristics. An heuristic algorithm for selecting indices to match projected access .
requirements is presented. The cost model on which the decision procedure is based is flexible. .
enough to incorporate the overhead costs of index creation, index storage and application .
program recompilation.

Index Selection in a Self-Adaptive Data Base Management System.

Michael Haommer and Arvola Chan. 1976.
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RadixSpline JUXT

A Single-Pass Learned Index. Kipf et al. 2020.
Estimates CDF. Cumulative Distribution Function.
Adds spline points to radix layer.

Model maps from key to position.



(a) B-Tree Index (b) Learned Index

Key Key
Model
BTree (e.g., NN)

pos\q pos\

!

pos - 0 pos + pagezise pOS - min_err pos + max_er

The Case for Learned Index Structures.

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.



Index

—— Unsorted column

RadixSpline: A Single-Pass Learned Index.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020.




Index

e — CDF

Unsorted column

RadixSpline: A Single-Pass Learned Index.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020.




O Spline point
— CDF

Index

RadixSpline: A Single-Pass Learned Index.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020.
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RadixSpline: A Single-Pass Learned Index.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020.
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RadixSpline: A Single-Pass Learned Index.

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann. 2020.




GreedySplineCorridor
Input: a spline S, |S| = n and an error corridor size €
Output: a spline connecting S|1], S[n| through the corridor
B = S[1], R =< B > // S[1] is the first base point
U=S5[2+¢ L=5[2] —e // error corridor bounds
fori=3ton
C' = S[i]
if BC is left of BU or right of BL
B=S[i—1,R=Ro< B>
U=C+He¢L=C—c¢
else
U =C+eL'=C—c¢
if BU is left of BU’

U=U"
if BL is right of BL’
L=1I
R = Ro < S[n] >
return R

Fig. 1. Greedy Spline Approximation with a Given Error Corridor

Smooth Interpolating Histograms with Error Guarantees.

Thomas Neumann and Sebastian Michel. 2008.
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The PGM-index.

Paolo Ferragina and Giorgio Vinciguerra. 2020.
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Base Data

LSI: A Learned Secondary Index Structure.

Andreas Kipf, Dominik Horn, Pascal Pfeil, Ryan Marcus, and Tim Kraska. 2022.



Sorted Array (Keys) [ I I I I I I I I I ] Not explicitly stored

Base Data

LSI: A Learned Secondary Index Structure.

Andreas Kipf, Dominik Horn, Pascal Pfeil, Ryan Marcus, and Tim Kraska. 2022.
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Sorted Array (Keys) [ l I l I I I I I I ] Not explicitly stored

Permutation Vector (TIDs) 9 8

Base Data 19 42 31 21

LSI: A Learned Secondary Index Structure.

Andreas Kipf, Dominik Horn, Pascal Pfeil, Ryan Marcus, and Tim Kraska. 2022.



o Lookup JUXT

Local Search
1 ©

[ \
Sorted Array (Keys) [ I I l I l I I I I J Not explicitly stored

Fingerprint Vector

Permutation Vector (TIDs) 9

Base Data 19 42 31 21

LSI: A Learned Secondary Index Structure.

Andreas Kipf, Dominik Horn, Pascal Pfeil, Ryan Marcus, and Tim Kraska. 2022.
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Database Cracking JUXT

Highly influential paper. Idreos et al. 2007.
Incrementally sorts copy of column.
Requires tracking of piece boundaries.

Adapting by query has drawbacks.



Column A

13
16

Database Cracking.

Stratos ldreos, Martin L. Kersten, and Stefan Manegold. 2007.



Cracker column of A
Column A after query Q1
- . | 13 4
Q1: 16 9
select * 4 2
from R 9 7 | Piecel:
where R.A > 10 > 1 | A<=10
and R.A< 14 12 3
S g 7 Q1 8
.
1 (copy) 6
19 13 | Piece2:
3 12 10<A< 14
14 11
11 16 | Piece 3:
8 19 14 <= A
6 14

Database Cracking.

Stratos ldreos, Martin L. Kersten, and Stefan Manegold. 2007.



Q1:

select *

from R

where R.A > 10
and R.A < 14

Q2:

select *

from R

where R.A>7
and R.A>=16

Database Cracking.

Cracker column of A

Cracker column of A

Column A after query Q1 after query Q2
13 4 4
16 9 )
4 2 1 o
9 v Piece 1 3 Piece 1: A<=7
2 1 A <= 10 6
12 3 7
7 Q1 8 Q¥ 9
. - . . _
1 (copy) 6 (in-plhce) 8 Piece 2: 7 < A<=10
19 13 | Piece2: 13
3 12 10<Aq14 12 Piece 3: 10<A< 14
14 11 11
UL 16 | Pigce 3: 14 o
8 19 14 <= A 16 Piece 4: 14 <=A<=16
6 14 19 |» Piece 5: 16 <A

Stratos ldreos, Martin L. Kersten, and Stefan Manegold. 2007.
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Self-Organizing Data Containers JUXT

Vision paper. Madden et al. 2022.
Separation of Storage and Compute.
Automatically create and modify indexes.

Goal is to minimize object access.



JUXT

Machine Machine Machine 3 Machine 4

1 2
Client3 Client4 Client5 Client6 Client7 Client8
SDC lib SDC lib SDC lib SDC lib SDC lib SDC lib

A /

MemoOry Memory
Client1 Client2 {
SDC lib SDClib In-Memory - In-Memory - [nM File2

SDC Filel SDC File2

emory”— SDC
- 7 _—
\ [~ / —_—

Cloud - SDC File1

Cloud - SDC FileN

| Data File a | | Data Ffle d | | Data File a |
[ Data File b | Data File b | MetaData File |
Data File c

[ MetaData File | MetaData File

Self-Organizing Data Containers.

Samuel Madden, Jialin Ding, Tim Kraska, Sivaprasad Sudhir, David Cohen, Timothy G. Mattson, and Nesime Tatbul. 2022.
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Indexing Immutable Data JUXT

Think make.

Queries ¢ Derived Indexes ¢ Immutable Data.
Navigate storage by layers of indexes.

Goal is to minimize latency.



Light Indexes for Storage JUXT

Created on demand in background.
|dempotent, immutable and shared.
Merged to cluster data.

Data skipping is key.



Adaptive Indexes for Compute

Dynamic in RAM.
Adapted by workload.

Local and transient.

Concurrent modification.

JUXT
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Outlook JUXT

Multi-Dimensional Indexes.

Succinct Data Structures.

Workload Prediction.



Summary JUXT

Index on demand, think make.

Copeland: "people do not delete."
Separation of Storage and Compute.

Academia is inspiration, not gospel.
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The Grid File: An Adaptable, Symmetric Multikey File Structure.

Jiirg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984.
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Figure 1: Flood’s system architecture.
SageDB [22] proposed theidea of alearned multi-dimensional
index but did not describe any details.

3 INDEXOVERVIEW

Flood is a multi-dimensional clustered index that speeds up

the processing of relational queries that select a range over
one or more attributes. For example:

SELECT SUM(R.X)

FROM MyTable

Learning Multi-Dimensional Indexes.
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Figure 2: A basic layout in 2D, with dimension order
(x, y) and ¢y = 5. Points are bucketed into columns
along x and then sorted by their y-values, creating the
seriliaziation order indicated by the arrows.

along the ith dimension, then define the dimension’s range
as r; =M;—m;+1. Then the cell for point p=(p,...,pq) is:

Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
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Figure 3: Basic flow of Flood’s operation

(d—1)-dimensional grid, computing intersections is straight-
forward. Suppose that each filter in the query is a range of
the form [q;,q¢ | for each indexed dimension i. If an indexed
dimension is not present in the query, we simply take the start
and end points of the range to be —co and +oo, respectively.
Conversely, if the query includes a dimension not in the index,
that filter is ignored at this stage of query processing.

Learning Multi-Dimensional Indexes.
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Figure 4: Doubling the number of columns can increase
the number of visited cells but decreases the number
of scanned points that don’t match the filter (light red).

(Fig. 4). However, adding more columns also increases the
number of sub-ranges, which incurs extra cost for projection
and refinement. Striking the right balance requires choosing a
layout with an optimal number of columns in each dimension.

Flood can also select the sort dimension. The sort dimen-
sion is special because it will incur no scan overhead; given
a query, Flood finds the precise sub-ranges to scan in the re-
finement step, so that the values in the sort dimension for
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(3) For each of these d possible orderings, run a gradient
descent search algorithm to find the optimal number of
columns {c; }o<j<q4-1 for the d —1 grid dimensions. The
objective function is Eq. 1. For each call to the cost model,
Flood computes the statistics N = {N,, Ny} and the in-
put features of the weight models using the data sample
instead of the full dataset D.

(4) Select the layout with the lowest objective function cost
amongst the d layouts.

Optimizing the layout is efficient (§7.7) because each itera-

tion of gradient descent does not require building the layout,

sorting the dataset, or running the query. Instead, statistics
are either estimated using a sample of D or computed exactly
from the query rectangle and layout parameters.

5 LEARNING FROM THE DATA

The simple index presented in §3 does not consider or adapt
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Figure 6: By flattening, each of the four columns in a
dimension will contain a fourth of the points.

the datasets used in our evaluation (§7), flattening provides
a performance boost of 20—30x over a non-flattened layout.

Note that while flattening may assign an equal number of
points to each column of a single attribute, it does not guar-
antee that each cell in the final grid has a similar number of
points. In particular. if two attributes are correlated. flattening




A STREAMING PARALLEL DECISION TREE ALGORITHM

Algorithm 1 Update Procedure
input A histogram h = {(p1,m1),...,(ps,mg)}, a point p.
output A histogram with B bins that represents the set SU { p}, where S is the set represented by h.

1: if p = p; for some i then

2: m;=m;+1

3: else

4:  Addthe bin (p, 1) to the histogram, resulting in a histogram of B+ 1 bins hU {(p,1)}. Denote
PB+1 =P and mpy1 = 1.

5:  Sort the sequence p1,...,ppr1. Denote by q1,...,gp1 the sorted sequence, and let 7 be a
permutation on 1,...,B+1 such that g; = py;) for all i =1,...,B+ 1. Denote k; = myy;),
namely, the histogram hU (p, 1) is equivalent to (q1,k1),.-.,(q+1,kB+1), Q1 < -.. < qB41.
Find a point g; that minimizes gj. 1 — g;.

Replace the bins (q;, ki), (gi+1,ki+1) by the bin

(Qiki + qir1kis

ki + k; :
ki+kj+1 ’ i+ H—l)

8: end if

A Streaming Parallel Decision Tree Algorithm.

Yael Ben-Haim and Elad Tom-Tov. 2010.
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THE END



